Finiteness of Compact Maximal Flats of Bounded Volume

نویسنده

  • HEE OH
چکیده

Let M be a complete Riemannian locally symmetric space of nonpositive curvature and of finite volume. We show that there are only finitely many compact maximal flats in M of volume bounded by a given number. As a corollary in the case M = SLn(Z)\ SLn(R)/ SOn, we give a different proof of a theorem of Remak that for any n ∈ N, there are only finitely many totally real number fields of degree n whose regulator is less than a given number.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Maximal Flats Are Not Peripheral

We prove that every non-positively curved locally symmetric manifold M of finite volume contains a compact set K such that no periodic maximal flat in M can be homotoped out of K. Este art́ıculo está dedicado a Cloe y a la madre que la parió.

متن کامل

Aspherical Manifolds with Relatively Hyperbolic Fundamental Groups

We show that the aspherical manifolds produced via the relative strict hyperbolization of polyhedra enjoy many group-theoretic and topological properties of open finite volume negatively pinched manifolds, including relative hyperbolicity, nonvanishing of simplicial volume, co-Hopf property, finiteness of outer automorphism group, absence of splitting over elementary subgroups, acylindricity, a...

متن کامل

Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions

We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.

متن کامل

Homotopy Type and Volume of Locally Symmetric Manifolds

We consider locally symmetric manifolds with a fixed universal covering, and construct for each such manifold M a simplicial complex R whose size is proportional to the volume of M . When M is non-compact, R is homotopically equivalent to M , while when M is compact, R is homotopically equivalent to M \ N , where N is a finite union of submanifolds of fairly smaller dimensions. This expresses h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007